A new R package for QTL analysis

Ronnie Nelson, José Álvarez-Castro, Lucy Crooks, Francois Besnier, Carl Nettelblad, Lars Rönnegård, Xia Shen, Örjan Carlborg

Aim of package

- Analysis of intercrosses from outbred lines
 - From F₂ crosses and back-crosses
 - From advanced intercrossed lines
- Determine QTL positions
- Determine epistatic interactions
- Fast and easy to use
- Explain genetic basis of complex traits including interactions

Input

- Common input files
 - Genotype
 - Individual data
 - Pedigree
- Initial checks
- Store data in single R-binary file

cnF2freq

- Determine genotype probabilities from outbred lines
 - Use marker and pedigree data
 - F₂ and back-crossed
 - Hidden Markov Model
- Efficient estimation from large datasets

Nettelblad C., Holmgren S., Crooks L. and Carlborg Ö. 2009. *cnF2freq: Efficient Determination of Genotype and Haplotype Probabilities in Outbred Populations Using Markov Models*. Bioinformatics and Computational Biology, 307-319. Heidelberg: Springer Berlin.

Regression

 Haley-Knott regression to determine QTL

Permutation testing

MCIBD

Input

CnF2freq Haplotyping and IBD

MCIBD

Regression FIA

NOIA

- Estimation of IBD matrix
- Approached by Monte Carlo sampling from marker probability matrix
- Available in combination with cnF2freq on Rforge
- Used for variance component QTL analysis

Haplotyping and IBD

- Advanced intercross line haplotyping
 - FORTRAN based application
 - Infer marker-phase deterministically
- Estimation of IBD matrix
 - FORTRAN based application
 - Computationally efficient estimation of IBD
- Used for variance component QTL analysis

Besnier F. and Carlborg Ö. 2007. A general and efficient method for estimating continuous IBD functions for use in genome scans for QTL BMC Bioinformatics **8**: 440

FIA

- Flexible Intercross Analysis
- Uses a general variance component model and utilizes the score statistic
- Models single and epistatic QTL
- More relaxed assumptions than fixed effect models
- Less sensitive to founder effects
- Require IBD

Rönnegård L., Besnier F. and Carlborg Ö. 2008. *An improved method for quantitative trait loci detection and identification of within-line segregation in F2 intercross designs.* Genetics **178**: 2315-2326

NOIA

- Input

 cnF2freq Haplotyping and IBD

 MCIBD

 Regression FIA

 NOIA
- Natural and orthogonal interaction
- Include genotype frequencies from analyzed populations
 - Meaningful in population context
 - Provide proper decomposition of genetic variance
- Genotype-phenotype map
- Epistatic interactions

Álvarez-Castro J.M. and Carborg Ö. 2007. A unified model for functional and statistical epistasis and its application in quantitative trait Loci analysis. Genetics **176**: 1151-1167.

Optimized

- Front end R
- Optimized Fortran and C++ code
- Code also optimized for parallel computing
 - Clusters
 - Grids
 - Multi-core
 - or combination of above

Additional

- Well documented
- Different input formats
- Mendelian errors
- Handle sex chromosomes
- Infer parents
- Visualization

Conclusion

- Main effect and interacting QTL detection
- Outbred lines
- Large datasets
- F₂, back-crosses and advanced intercross lines
- Different models

Acknowledgments

- Computational Genetics group
 - (Mats Petterson, Xia Shen, Anna Johansson, Lucy Crooks, Xidan Li, Stefan Marklund, Weronica Ek, Marcin Kierczak and Örjan Carlborg)
- Other Co-Authors
 - (José Álvarez-Castro, Francois Besnier, Carl Nettelblad and Lars Rönnegård)

