

Applying different genomic selection approaches on QTLMAS2010 data

Javad Nadaf & Ricardo Pong-Wong

Genomic Selection

Selection based on genomic information or Genomic EBV

➤ GEBV can be calculated in different ways including different methods within Bayesian framework and GBLUP

Polygenic effect can also be added to the model

20 Founders

11

5 Generations

2326+900 individuals

Overall mean r² of adjacent SNP pairs

Approaches used for estimation of GEBV

In the model:	Bayes B type	BLUP type
Genomic (SNP)	GBB	GBLUP
Genomic & Polygenic	GPBB	GPBLUP

ROSLIN

Approaches used for estimation of GEBV

Bayes B type :

- GBB
$$y = \mu + \sum z_i \beta_i + e$$

- **GPBB**
$$y = \mu + \sum z_i \beta_i + Polygenic + e$$

•
$$\beta_i$$
 ~N(0, σ_{snp}^2) with prob Π

•
$$\beta_i$$
 0 with prob (1- Π)

• Polygenic $\sim N(0, A\sigma_{pol}^2)$ A Calculated using pedigree information

ROSLIN

Approaches used for estimation of GEBV

> BLUP type:

- GBLUP
$$Y = \mu + g + e$$

- GPBLUP
$$Y = \mu + g + Polygenic + e$$

- $\begin{array}{lll} \textbf{-} & \textbf{g} & \sim N \ (0, \textbf{G}\sigma_g^{\ 2}) \ , & \textbf{G} : \ \text{Calculate using marker information (IBS relationship)} \\ \textbf{-} & \textbf{Polygenic} & \sim N \ (0, \textbf{A}\sigma_{pol}^{\ 2}) & \textbf{A} \ \ \text{Calculated using pedigree information} \end{array}$
- ASRemI (Gilmour et al. 2000)

Models for the Binary trait

➤ Bayes B type

➤ Underlying normally distributed liability trait

not affected

≻BLUP type

➤ Logit as the link function.

Care needed when comparing between BB and BLUP type

ROSLIN

Supplementary QTL and association analyses

- Linkage analysis
 - Variance components (Quantitative trait):
 - > IBD matrix at QTL positions
 - Variance components estimation using REML
 - Regression approach, Half-sib analysis (Binary trait)
 - ➢ GridQTL
- Association analysis
 - > GRAMMAR
 - ➤ Phenotypes corrected for polygenic effects were used and SNP additive effects were fitted using **GenABLE** (Aulchenko YS et al 2007)

Genetic variance explained by SNP in BB analyses

Calculated using approximation from infinitesimal model theory

$$Var (EBV) = r^2 \sigma_g^2$$

$$PEV = (1-r^2) \sigma_g^2$$

$$\sigma_{q}^{2} = Var(EBV) + mean (PEV)$$

Heritability estimates: 1- Quantitative trait

		polygenic	SNP (genomic)	Total
	GP BB	16	40	56
BB	G BB	-	47	47
	Polygenic only	55	-	55
	GP BLUP	15	36	51
BLUP	G BLUP	-	42	42
	Polygenic only	54	-	54

Model comparison for the Quantitative trait

		Bayes Factor (BF)
D D	GP BB	51
ВВ	GBB	0
		LRT
BLUP	GP BLUP	12
	GBLUP	0

Better fit when adding polygenic component

Heritability estimates: 2- Binary trait

		Polygenic	SNP	Total	
	GPBB (5	45	50	Liability
BB	G BB		46	46	model
	Polygenic only	43	-	43	
	GP BLUP	~0	65	65	Logit link
BLUP	G BLUP		65	65	Logit lini function
	Polygenic only	44	-	44	

git link ction

Polygenic components were not important

Correlation between EBVs obtained by different methods

Quantitative Trait

Binary Trait

Estimation of the Π (SNP with effects)

Quantitative Trait	Binary Trait
5%	10%

QTL mapping: signals from different approaches (Quantitative trait)

QTL mapping: signals from different approaches (Binary trait)

Relationship between univariate EBVs of the two traits (r²=0.58)

Traits are correlated: Might benefit from a multivariate analysis

Conclusions

- > Adding polygenic effect
 - Quantitative trait: improve model fitting
 - Binary trait: not important

➤ Consistent results were obtained using all 4 approaches (r² grater than 0.94)

Conclusions

➤ Percentage SNP as QTL

Quantitative trait: 5%

Binary trait: 10%

➤ Greatest evidence with all methods for QTLs on chr 1&3 for both traits

Acknowledgement:

Dirk-Jan De Koning Chris S. Haley

