

Comparative analysis of submitted results on QTL mapping and applied methods

M. Szydłowski, S. Mucha, M. Pszczoła, T. Strabel, A. Wolc

Common task

- Describe the genetic architecture of quantitative and binary trait
- 7 groups reported QTLs for quantitative trait (QT)
- 5 groups reported QTLs for binary trait (BT)

MAS Methods used by participants

- Bayesian
- BayesC
- BayesCPi
- Partial Least Squares regression (PLSR)
- GRAMMAR
- Haplotyping
- DHGLM

L MAS Comparison criteria

- A **true QTL** was considered mapped if one or more submitted positions were within 1 Mb distance from the QTL. Sometimes one submitted position maps two different QTLs.
- Number of **false positions** is the number of submitted positions with the distance to the closest true QTL exceeding 1 Mb.

MAS True genetic architecture

- For quantitative trait
 - 30 additive QTLs
 - 2 pairs of epistatic QTLs
 - 3 imprinted QTLs
- For binary trait
 - 22 additive QTLs a subset of QTLs affecting quantitative trait

MAS Reported values

- Quantitative trait:
 - QTL positions
 - % genetic variance /genetic variance
- Binary trait
 - QTL positions
 - % genetic variance /genetic variance on arbitrary scale

QΤ

- 7. Sun and Dekkers
- 6. Shen et al.
- 5. Nettelblad
- 4. Karacaören et al.
- 3. Coster and Calus
- 2. Calus et al.
- 1. Bouwman et al.

- 5. Shen et al.
- 4. Karacaören et al.
- 3. Coster and Calus
- 2. Calus et al.
- 1. Bouwman et al.

- 7. Sun and Dekkers
- 6. Shen et al.
- 5. Nettelblad
- 4. Karacaören et al.
- 3. Coster and Calus
- 2. Calus et al.
- 1. Bouwman et al.

- 5. Shen et al.
- 4. Karacaören et al.
- 3. Coster and Calus
- 2. Calus et al.
- 1. Bouwman et al.

- 7. Sun and Dekkers
- 6. Shen et al.
- 5. Nettelblad
- 4. Karacaören et al.
- 3. Coster and Calus
- 2. Calus et al.
- 1. Bouwman et al.

- 5. Shen et al.
- 4. Karacaören et al.
- 3. Coster and Calus
- 2. Calus et al.
- 1. Bouwman et al.

- 7. Sun and Dekkers
- 6. Shen et al.
- 5. Nettelblad
- 4. Karacaören et al.
- 3. Coster and Calus
- 2. Calus et al.
- 1. Bouwman et al.

- 5. Shen et al.
- 4. Karacaören et al.
- 3. Coster and Calus
- 2. Calus et al.
- 1. Bouwman et al.

- 7. Sun and Dekkers
- 6. Shen et al.
- 5. Nettelblad
- 4. Karacaören et al.
- 3. Coster and Calus
- 2. Calus et al.
- 1. Bouwman et al.

- 5. Shen et al.
- 4. Karacaören et al.
- 3. Coster and Calus
- 2. Calus et al.
- 1. Bouwman et al.

QΤ

Authors	Method	Reported positions	Mapped QTLs	Mean dist.	False
1. Bouwman et al.	Bayesian	9	10	0.34 Mb	1
2. Calus et al.	BayesC	24	15	0.26 Mb	6
3. Coster and Calus	PLSR	25	2	0.62 Mb	20
4. Karacaören et al.	GRAMMAR	16	5	0.31 Mb	7
5. Nettelblad	Haplotyping	10	7	0.34 Mb	3
6. Shen et al.	DHGLM	9	11	0.42 Mb	2
7. Sun and Dekkers	BayesCPi	15	16	0.41 Mb	2

QT

MAS Mapped / reported QT

Error rate

Authors	Method	Reported	Mapped	Mean	FALSE
		positions	QTLs	dist.	
1. Bouwman et al.	Bayesian	5	5	0.30 Mb	0
2. Calus et al.	BayesC	24	8	0.33 Mb	14
3. Coster and Calus	PLSR	22	5	0.77 Mb	17
4. Karacaören et al.	GRAMMAR	50	5	0.33 Mb	41
5. Shen et al.	DHGLM	6	5	0.45 Mb	2

MAS Succes rate

L MAS Mapped / reported

Error rate

Summary

- Epistatic QTLs were closely linked and therefore one or both SNPs were often found as a single QTL
- Bayesian methods were more powerful for detecting QTLs
- Differences among methods increased with trait complexity
- Imprinted QTL difficult to detect even if on chip

Congratulations to the authors !!!
Thank you for sharing the results !!!

