Genomic breeding value estimation and QTL detection using univariate and bivariate models

Mario Calus Han Mulder Roel Veerkamp

Animal Breeding & Genomics Centre

Introduction

- Genomic breeding value estimation yields accurate breeding values for juvenile animals
 - Increased accuracy due to use of SNPs
- Multiple trait was a major development in breeding value estimation
 - Increased accuracy due correlation between traits (e.g. across country evaluations)
- => Can we combine both approaches?

Objectives

1. Estimate genomic breeding values with SNP based univariate and bivariate models

2. Detect QTL with univariate and bivariate models

Four different models¹ were applied

Name	Model	SNP variances
Α	Polygenic - pedigree relationship matrix	SNP not included
G	Polygenic - marker relationship matrix	Equal for all SNP
BA ²	BayesA: effects estimated per SNP	Drawn from 1 distribution
BC ²	BayesC: effects estimated per SNP	Drawn from 2 distributions

¹ Variances are estimated in all models simultaneously with the effects

=> Univariate and bivariate analyses with all models

² BA and BC include a polygenic effect

BayesC; QTL-mapping

- Univariate: for each trait separately
- Bivariate: QTL probability inferred for both traits simultaneously
- => no distinction in QTL that affect one or both traits
- Significance thresholds were derived for the bivariate model using 2,000 permutations
 - Genotypes permuted against phenotypes & pedigree

Correlation reference population phenotypes & FRV

		Model						
Model	Trait	Α	G	BA	ВС			
Univariate	Quantitative	0.892	0.741	0.824	0.824			
	Binary	0.671	0.602	0.637	0.631			
Bivariate	Quantitative	0.878	0.740	0.744	0.746			
	Binary	0.618	0.591	0.592	0.583			

Correlations EBV juveniles quantitative (binary) trait

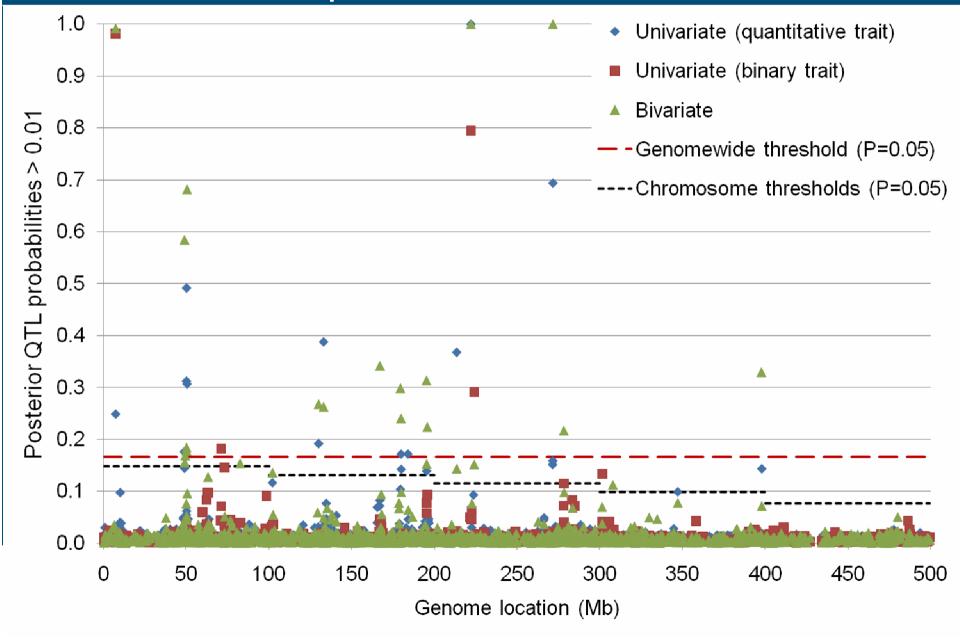
		Univariate			ı Bivariate				
		Α	G	ВА	ВС	Α	G	ВА	ВС
	Α		0.60	0.67	0.63	0.99	0.62	0.61	0.58
Univariate	G	0.60		0.98	0.94	0.60	0.99	0.99	0.94
	ВА	0.62	1.00		0.98	0.66	0.98	0.99	0.96
	ВС	0.56	0.95	0.96		0.63	0.94	0.96	0.98
	Α	0.93	0.62	0.64	0.60		0.63	0.61	0.58
Bivariate	G	0.60	0.95	0.95	0.94	0.64		0.99	0.95
	ВА	0.58	0.94	0.95	0.96	0.63	0.99		0.98
	вс	0.50	0.88	0.88	0.95	0.57	0.94	0.96	

Correlations EBV juveniles quantitative (binary) trait

		Univariate			Bivariate				
		А	G	ВА	ВС	А	G	ВА	ВС
	Α		0.60	0.67	0.63	0.99	0.62	0.61	0.58
Univariate	G	0.60		0.98	0.94	0.60	0.99	0.99	0.94
	ВА	0.62	1.00		0.98	0.66	0.98	0.99	0.96
	BC	0.56	0.95	0.96		0.63	0.94	0.96	0.98
	Α	0.93	0.62	0.64	0.60		0.63	0.61	0.58
Bivariate	G	0.60	0.95	0.95	0.94	0.64		0.99	0.95
	ВА	0.58	0.94	0.95	0.96	0.63	0.99		0.98
	BC	0.50	0.88	0.88	0.95	0.57	0.94	0.96	

Correlations EBV juveniles quantitative (binary) trait

		Univariate !			Bivariate				
		А	G	ВА	ВС	Α	G	ВА	ВС
	Α		0.60	0.67	0.63	0.99	0.62	0.61	0.58
Univariate	G	0.60		0.98	0.94	0.60	0.99	0.99	0.94
	ВА	0.62	1.00		0.98	0.66	0.98	0.99	0.96
	BC	0.56	0.95	0.96		0.63	0.94	0.96	0.98
	Α	0.93	0.62	0.64	0.60		0.63	0.61	0.58
Bivariate	G	0.60	0.95	0.95	0.94	0.64		0.99	0.95
	ВА	0.58	0.94	0.95	0.96	0.63	0.99		0.98
	BC	0.50	0.88	0.88	0.95	0.57	0.94	0.96	



Results summarized - EBV

- Correlation phenotype & EBV:
 - Lower for SNP based models
 - Lower for bivariate models
- Correlations among predicted EBV:
 - High between univariate and bivariate runs
 - EBV of SNP based models with most extreme assumptions (G vs. BC) are least related

Posterior QTL probabilities

Results summarized – QTL detection

- 14 regions of < 2Mb with significant SNP effects, each explained:</p>
 - 0.001 to 13.2% of genetic variance quantitative trait
 - 0.017 to 11.9% of genetic variance binary trait
- Bivariate analysis detects QTL with higher posterior probability compared to univariate analysis
- 3 out of 4 major QTL affect both traits
- No QTL identified on chromosome 5

Conclusions

- Estimated breeding values:
 - G and BayesA very similar
 - BayesC is different from G and BayesA
- QTL mapping:
 - Bivariate analysis detects QTL with higher posterior probability

Acknowledgements

RobustMilk (www.robustmilk.eu)

