DETECTING QTL AND ESTIMATING BREEDING VALUES IN THE QTLMAS 2010 DATA

Albart Coster (albart.coster@wur.nl); Mario Calus (mario.calus@wur.nl).

Animal Breeding and Genomics Centre

17-18 May 2010

EXPLORING THE DATA

Data:

- Five generations of pedigree (gen 0 to 4);
- genotypes of approx. 10.000 markers for all individuals;
- phenotypes of a continuous and a discrete trait for individuals in generations 0 to 3.

Initial questions:

- Are there effects of sex or generation in the data?
- Are the two traits heritable?
- Are the two traits correlated?
- Is there a genetic correlation between the traits?

BOXPLOTS OF THE DATA

BIVARIATE ANIMAL MODEL

$$\begin{split} \mathbf{Y} &= \mathbf{X}\mathbf{B} + \mathbf{Z}\mathbf{U} + \mathbf{E} \\ & \mathbf{U} \sim \mathbf{N} \left(0, \mathbf{A} \otimes \begin{bmatrix} \sigma_{gc}^2 & \sigma_{gc,gd} \\ \sigma_{gc,gd} & \sigma_{gd}^2 \end{bmatrix} \right) \\ & \mathbf{E} \sim \mathbf{N} \left(0, \mathbf{I} \otimes \begin{bmatrix} \sigma_{ec}^2 & 0 \\ 0 & \sigma_{ed}^2 \end{bmatrix} \right) \end{split}$$

TABLE: Results of the multivariate animal model..

h ² cont.	h ² disc.	ρ_g	$\rho_{\mathcal{P}}$
0.53 (0.06)	0.22 (0.04)	0.66 (0.09)	0.25 (0.03)

CONCLUSION INITIAL ANALYSIS

- No sex effects was present.
- No selection was present.
- Traits are phenotypically correlated.
- Both traits are heritable; continuous trait more than discrete trait.
- Traits are genetically correlated.

SINGLE MARKER REGRESSION

Objectives:

- Easy analysis of the marker data.
- Observe genomic regions of interest.
- Compare to more sophisticated method.

Model:

$$y = Gv + e$$

SINGLE MARKER REGRESSION: RESULTS

SOME PLSR THEORY

X is matrix of independent variables (genotypes)

Y is matrix of dependent variables (phenotypes)

PLSR decomposes X and Y:

X = TW'

Y = UQ'

U = BT

Requirements:

- both T and U orthogonal;
- maximal covariance between T and U;
- T and U sequentially contain maximal variance of X and Y.

From: P. Geladi, Anal Chim Acta 185:1-17; De Jong Chemom Intell Lab Syst 18:251-263.

APPLICATION OF PLSR TO DATA: TWO STEP APPROACH

Step 1 (finding QTL)

- Independent PLSR models for each chromosome.
- Bootstrapping to calculate empirical s.e. of regression coefficients for markers.
- Standardize regression coefficients of each marker, $\frac{\hat{\beta}}{\hat{s}\hat{e}}$.
- Detect QTL based on smoothed profile of standardized regression coefficients: QTL is a local maximum of the smoothed curve (first derivative = 0, second derivative < 0).

Step 2 (calculation of EBV)

- Use 1000 most significant marker for each trait: 2000 markers in final model.
- Fit PLSR model with 2000 markers.
- Use regression coefficients to calculate EBV of individuals for both traits.

Smoothed curve of standardized β 's

TABLE: Table of QTL detected on chrom. 1 and 3.

marker		Cont. trait		Discr	Discr. trait	
	MAF	\hat{eta}	$\frac{\sigma_{m}^{2}}{\sigma_{g}^{2}}$	$\hat{oldsymbol{eta}}$	$\frac{\sigma_{\underline{m}}^2}{\sigma_g^2}$	
Chrom. 1						
156	0.46	2.9920	0.0817	0.0612	0.0405	
159	0.39	-2.3459	0.0479	-0.0654	0.0442	
494	0.48	0.3242	0.0010	-0.0369	0.0148	
495	0.06	-1.4611	0.0046	0.0672	0.0116	
1058	0.31	4.1433	0.1355	0.0426	0.0170	
1087	0.45	-0.4640	0.0020	-0.0397	0.0170	
1621	0.41	0.2338	0.0005	0.0108	0.0012	
1976	0.29	-0.0818	0.0001	0.0336	0.0102	
Chrom. 3						
4035	0.31	-1.6002	0.0200	-0.0150	0.0021	
4384	0.37	-1.3395	0.0153	-0.0650	0.0427	
4519	0.40	-0.1875	0.0003	-0.0489	0.0249	
4832	0.47	-1.7533	0.0281	-0.0576	0.0360	
5447	0.45	1.9137	0.0333	0.0062	0.0004	
5695	0.46	-1.2392	0.0140	0.0278	0.0084	
5811	0.38	-2.1743	0.0407	-0.0930	0.0883	
6082	0.28	0.6369	0.0030	0.0123	0.0013	

TABLE: Correlation between phenotype and EBV summarized per generation.

Trait	0	1	2	3
Cont. trait	0.66	0.70	0.69	0.69
Discr. trait	0.64	0.62	0.55	0.54

CONCLUSIONS

- PLSR is a good alternative method for finding QTL and calculating EBV.
- Some marker selection is required for large numbers of markers.
- Smoothing curves of P-values of regression coefficients is an intuitive graphical method to find QTL.
- Several QTL were found for both trait, some of them pleiotropic.
- Expect that many pleiotropic QTL were simulated.